
www.manaraa.com

HYTECH: The Next Generation
�y

Thomas A. Henzinger Pei-Hsin Ho Howard Wong-Toi

Computer Science Department
Cornell University
Ithaca, NY 14853

(hytechjtahjhojhoward)@cs.cornell.edu

Abstract. We describe a new implementation of HyTech1, a symbolic model checker

for hybrid systems. Given a parametric description of an embedded system as a col-

lection of communicating automata, HyTech automatically computes the conditions

on the parameters under which the system satis�es its safety and timing requirements.

While the original HyTech prototype was based on the symbolic algebra tool Mathe-

matica, the new implementation is written in C++ and builds on geometric algorithms

instead of formula manipulation. The new HyTech o�ers a cleaner and more expres-

sive input language, greater portability, superior performance (typically two to three

orders of magnitude), and new features such as diagnostic error-trace generation. We

illustrate the e�ectiveness of the new implementation by applying HyTech to the auto-

matic parametric analysis of the generic railroad crossing benchmark problem [HJL93]

and to an active structure control algorithm [ECB94].

1 Introduction

There has been increasing use of embedded software and hardware for controlling physical systems in

real time. Many of these embedded controllers occur in safety-critical applications where correctness

is essential. However, traditional methods of program analysis are not immediately applicable to

such hybrid systems, which involve a mixture of both discrete and continuous components. Model

checking is an algorithmic veri�cation technique that determines whether an automaton model

of a discrete �nite-state system satis�es its temporal-logic requirements. Model checking has been

extended to real-time systems that are modeled as timed automata [AD94, HNSY94], and to hybrid

systems that are modeled as linear hybrid automata [ACHH93, ACH+95]. In these cases, the state

space is in�nite, and the formal analysis must proceed symbolically (i.e. not enumeratively), by

describing in�nite state sets using linear constraints.

�This research was supported in part by the ONR YIP award N00014-95-1-0520, by the NSF CAREER award
CCR-9501708, by the NSF grants CCR-9200794 and CCR-9504469, by the AFOSR contract F49620-93-1-0056, and

by the ARPA grant NAG2-892.
yA preliminary version of this paper appeared in the Proceedings of the 16th Annual IEEE Real-time Systems

Symposium (RTSS 1995), pp. 56{65.
1The tool HyTech, together with its user guide, is publicly available through the World-Wide Web via the URL

http://www.cs.cornell.edu/Info/People/tah/hytech.html.

1

www.manaraa.com

We present a completely new implementation of the symbolic model checker HyTech for lin-

ear hybrid automata. Previously, we developed a prototype to test the feasibility of this ap-

proach [AHH93, HH95a]. The prototype was written in Mathematica for rapid development and

easy experimentation, at the cost of portability and performance. Motivated by the prototype's suc-

cess, we have reimplemented the tool. The new version o�ers a marked improvement in e�ciency,

convenience, and generality. First, in�nite state sets are represented as polyhedra in multidimen-

sional real space, instead of Mathematica formulas. Polyhedra provide a uniform representation

that is implemented, entirely in C++, using standard data structures and geometric algorithms for

manipulation [Che68]. For example, for computing the set of states that can be reached by a time

delay, we compute the \shadow" of a polyhedron (which is easy) instead of eliminating an existen-

tial quanti�er from a Mathematica formula (which is expensive). Our reimplementation uses an

e�cient C++ library of polyhedral operations [Hal93, HRP94]. Second, the input language is now

substantially cleaner and more expressive. By incorporating generalized linear conditions on the

rates of analog variables, nondeterministic and simultaneous assignments, and urgent transitions

into the input language, we allow the speci�cation and analysis of a wider class of hybrid systems.

Careless system descriptions can be caught quickly by the parser. Third, there is an enriched and

user-programmable command language which includes macros for common veri�cation tasks such

as reachability analysis and diagnostic error-trace generation. Last, the new veri�er is portable,

because it no longer relies on Mathematica.

We have recomputed more than 20 case studies that had been analyzed with the HyTech pro-

totype [AHH93, ACH+95, HH95a, HH95b, HH95c, HWT95]. Our results show a veri�cation-time

improvement of roughly two to three orders of magnitude. For example, using our new implemen-

tation, the Philips audio control protocol [BPV94] can be analyzed in 19 seconds as opposed to

5.0 hours [HWT95].2 Indeed, without sacri�cing generality, the performance of HyTech is now

comparable to automatic veri�ers for more specialized types of real-time systems. Three examples

of tools for the symbolic analysis of timed automata are Kronos [DY95], Veriti [DWT95], and

Uppaal [LPY95]. Another veri�cation tool for linear hybrid automata is Polka [HRP94], which

focuses on abstract-interpretation techniques.

In Section 2, we give a brief review of the hybrid automaton model and corresponding analysis

techniques. In Section 3, we present the new implementation of HyTech. For more detail, the

user guide [HHWT95] may be consulted. In Section 4, we include two case studies that, previously,

have not been formalized using hybrid automata. Neither one of these case studies was designed

by us, and both were published at the last symposium in this series [HL94, ECB94].

The generic railroad crossing (GRC) problem, which is derived from the train-gate crossing

of [LS85], was posed in [HJL93] as a challenge benchmark for formal methods for real-time systems.

Solutions to the problem have been formally veri�ed using a number of techniques, including

modecharts [JS88], process algebras [GL90], Alur-Dill timed automata [ACD+92], machine-assisted

theorem proving [Sha93], model checking [WM93], and Lynch-Vaandrager timed automata [HL94].

Using linear hybrid automata, we provide the �rst automatic synthesis of critical timing constraints,

namely, the maximal amount of time the controller can wait before commanding the gate to lower.

The active control structure problem was posed and veri�ed in [ECB94] using the Concurrency

Workbench. A sensor and an actuator are coordinated using a pulse control algorithm to apply

controls to an active structure. We use HyTech to automatically synthesize the precise lower and

upper bounds on the delays between successive pulse applications.

2All �gures obtained on a Sun 670MP.

2

www.manaraa.com

x
i
= 0

enterRi

R

inIi

xi := (�1; 0]

far

exiti

xi � 0 xi � �2

I
�1 � xi � �2

Figure 1: Train automaton Ti

g = 90

_g = 0

g � 90
raising

_g 2 [9; 10]

lower

lower

raise

raise

g = 0

_g = 0

g = 90 g = 0

raise

lowering

_g 2 [�10;�9]

g � 0

g = 90

lowerraise

lower

open

closed

Figure 2: Gate automaton

2 Linear Hybrid Automata

We model embedded systems as the parallel composition of coordinating linear hybrid automata

[ACHH93]. Informally, a linear hybrid automaton consists of a �nite set X of real-valued variables

and a labeled multigraph (V;E). The edges E represent discrete events, each labeled with condi-

tions on the old and new values of X . The vertices V represent control modes, each labeled with

conditions on the slopes of X . The automaton state changes either instantaneously through the

action associated with a discrete event, or while time elapses, through the continuous activity asso-

ciated with a control mode. Our automata are more expressive than those of the prototype [HH95a]

in that we allow more general instantaneous actions (arbitrary linear conditions on old and new

variable values), more general continuous activities (arbitrary linear conditions on slopes), and

urgent events (which must take place as soon as they are enabled).

We use the linear hybrid automata that model the GRC problem as a running example. The

GRC system consists of two trains, a gate, and a controller. The role of the controller is to ensure

that the gate is always closed whenever there are trains in the track intersection, and that the gate

is not closed unnecessarily long. Each train is initially some distance away from the intersection,

and the gate is open. As a train approaches the intersection, it triggers a sensor signaling its

upcoming entry to the controller. The controller waits until the last possible moment to send a

lower command to the gate. When the train has left the intersection (and the other train is at a

safe distance from the intersection), the controller commands the gate to be raised. The system

is described in more detail in Section 4. The linear hybrid automata for the trains and the gate

appear in Figures 1 and 2.

3

www.manaraa.com

2.1 De�nition

A linear expression over a set X of real-valued variables is a linear combination of variables from

X with rational coe�cients. A linear inequality over X is an inequality between linear expressions

over X . A convex predicate over X is a conjunction of linear inequalities over X ; and a linear

predicate is a disjunction of convex predicates.

A linear hybrid automaton A consists of the following components.

Variables A �nite ordered set X = fx1; x2; : : : ; xng of real-valued variables. A valuation is a

point (s1; s2; : : : ; sn) in the n-dimensional real space Rn, or equivalently, a function that maps each

variable xi to a value si. A convex zone is a convex polyhedron in Rn; and a linear zone is a �nite

collection of convex zones. Each convex (linear) predicate � de�nes a convex (linear) zone [[�]] � Rn

such that s 2 [[�]] i� �[X := s] is true.

In the GRC example, the position of each train Ti is determined by the value of the variable xi,

which models a clock that indicates how long the train will take to reach the sensor placed ahead

of the intersection. The variable g models the angle of the gate. When g = 90, the gate is open;

when g = 0, it is closed.

Locations A �nite set V of vertices called locations, used to model control modes. For example,

the gate automaton has the four locations open, raising, lowering , and closed .

A state (v; s) of the automaton A consists of a location v 2 V and a valuation s 2 Rn. A linear

region
S
v2V f(v; Sv)g is a collection of linear zones Sv � R

n, one for each location v 2 V . A state

predicate is a collection
S
v2V f(v; �v)g of linear predicates �v , one for each location v 2 V . Each

state predicate ' =
S
v2V f(v; �v)g de�nes the linear region [[']] =

S
v2V f(v; [[�v]])g. When writing

state predicates, we freely use boolean operators between state predicates, and we use the location

counter loc, which ranges over the set V of locations. For example, we write loc = v _ x = 3 for

the state predicate f(v; true)g [
S
v0 6=vf(v

0; x = 3)g.

Initial condition A state predicate '0 called the initial condition. For example, the gate au-

tomaton has the initial condition loc = open ^ g = 90.

Location invariants A labeling function inv that assigns to each location v 2 V a convex

predicate inv(v) over X , the invariant of v. The state (v; s) is admissible if s 2 inv(v). Control of

A may reside in location v only while inv(v) is satis�ed, so the invariants may be used to enforce

progress in the automaton. Nonconvex invariants can be modeled by splitting locations.

In the gate automaton, inv(open) = (g = 90), inv(lowering) = (g � 0), inv(raising) = (g � 90),

and inv(closed) = (g = 0). The invariant at location lowering implies that the gate can only

be lowered until it is closed, at which point control moves to location closed . In the graphical

representation, we omit invariants of the form true .

Transitions A �nite multiset E of edges called transitions, used to model discrete events. Each

transition (v; v0) identi�es a source location v 2 V and a target location v0 2 V . For example, the

gate automaton has ten transitions.

Instantaneous actions A labeling function jump that assigns an update set and a jump condition

to each transition e 2 E. The update set upd(e) is a subset of X . The jump condition jump(e)

is a convex predicate over X [Y 0, where Y = fy1; : : : ; ykg = upd(e), and Y 0 = fy01; : : : ; y
0
kg. The

variable xi refers to its value before the transition, and the primed variable y0i refers to the value

of yi after the transition. Only variables in upd(e) are updated by the transition. Formally, for the

transition e = (v; v0), the binary transition-step relation !e on the admissible states is de�ned such

4

www.manaraa.com

that (v; s)!e (v
0; s0) i� (1) jump(e)[X; Y 0 := s; s0[Y]]3 is true, and (2) for all variables xi 2 X n Y ,

si = s0i. The transition e is enabled at the state (v; s) if there exists a state (v0; s0) such that

(v; s)!e (v
0; s0). Nonconvex jump conditions can be modeled by splitting transitions.

When writing update sets and jump conditions, we often use nondeterministic guarded assign-

ments to closed intervals (bounded or unbounded). For example, we write � ! yi := [l; u] for the

update set fyig and the jump condition � ^ l � y0i � u, where l and u are linear expressions over

X . This jump condition is enabled in the valuation s if the guard � is satis�ed, i.e. s 2 [[�]]. Then

yi is updated nondeterministically to any value in the interval [s(l); s(u)], where s(l) is the value

of l interpreted in s. In the graphical representation, we use unlabeled edges to indicate empty

update sets.

Urgency ags A partial labeling function asap that assigns the urgency ag Asap to some

transitions in E. The transitions in the domain of asap are called urgent. The state (v; s) is urgent

if some urgent transition is enabled at (v; s).

Continuous activities A labeling function rate that assigns a rate condition to each location

v 2 V . The rate condition rate(v) is a convex predicate over _X = f _x1; _x2; : : : ; _xng. The variable _xi
denotes the rate of change (the �rst derivative) of xi. As long as control of A resides in location

v, the variables change along smooth trajectories whose �rst derivatives satisfy the rate condition.

Formally, for the nonnegative real � 2 R�0, the time-step relation !� on the admissible states is

de�ned such that (v; s)!� (v
0; s0) i� (1) v0 = v, (2) � > 0 implies (v; s) is not urgent, and (3) either

� = 0 and s0 = s, or � > 0 and rate(v)[_X := � � (s0 � s)] is true. The real � represents a delay of

duration �. Nonconvex rate conditions can be modeled by splitting locations.

In the gate automaton, rate(open) = (_g = 0), rate(raising) = (9 � _g � 10), rate(closed) = (_g =

0), and rate(lowering) = (�10 � _g � �9). The rate condition at location lowering implies that

the gate is lowered at a rate that varies between 9 and 10 degrees per second. The variables xi of

the train automata Ti have constant rate 1, and therefore measure time. They are called clocks.

Formally, the variable x is discrete (a clock) if for all locations v 2 V , rate(v) implies _x = 0 (_x = 1).

The variable x is a stopwatch if for all locations v 2 V , rate(v) implies _x 2 f0; 1g. Clocks are useful

for measuring delays between transitions, and stopwatches are useful for measuring durations, such

as the accumulated time spent in a set of locations. The discrete variable x is a parameter if every

jump condition implies x0 = x. Parameters have �xed values. In the graphical representation, we

omit conjuncts that specify the rates of clocks and discrete variables in the rate conditions, and we

omit conjuncts that specify the jumps of parameters in the jump conditions (when the type of a

variable is clear from the context).

Synchronization labels A �nite set L of synchronization labels, and a labeling function syn

that assigns a synchronization label from L [f�Ag to each transition in E. The internal label

�A is speci�c to the automaton A, and does not occur in the label set of any other automaton.

The synchronization labels are used to de�ne the parallel composition of automata. In the gate

automaton, syn(open; lowering) = lower . In the graphical representation, �A is omitted.

The polyhedral library [Hal93] supports only nonstrict linear inequalities. This limitation im-

poses two restrictions on the automata that can be analyzed by the current implementation of

HyTech. First, we require that each urgent transition is invariant-enabled, where the transition

e = (v; v0) is invariant-enabled if e is enabled at all admissible states of the form (v; s). In this case,

we call the source location v urgent. Second, we require that all rate conditions de�ne bounded

polyhedra. Neither restriction is required in theory.

3Given a valuation s, we write s[Y] for the restriction of s to the variables in Y .

5

www.manaraa.com

exit1

x2 � �

x2 � � raise

ASAP

exit2

exit1

lower

must raise

enterR2

enterR1
x1 � �

exit2

exit2

x1 � �

x2 � �

exit1

enterR1

enterR2

x1 � �^

x1 = � _ x2 = �

open
closed

Figure 3: Controller automaton

2.2 Parallel composition

A hybrid system typically consists of several components that operate concurrently and commu-

nicate with each other. The component automata coordinate both through shared variables and

synchronization labels. The automaton that models the entire system is obtained from the compo-

nent automata using a product construction.

Let A1 be the linear hybrid automaton (X1; V1; '
0
1; inv1; E1; upd1; jump1; asap1; rate1; L1; syn1),

and de�ne A2 similarly. In the product A1�A2, two transitions e1 and e2 from the two component

automata A1 and A2 are executed simultaneously if syn1(e1) = syn2(e2). They are interleaved if

syn1(e1) 6= syn2(e2) and the label syn1(e1) does not occur in A2's label set, nor the label syn2(e2) in

A1's label set. For reasons of e�cient veri�cation, we do not permit the \accidental" simultaneity

of component transitions. In the GRC example, the system is composed of the train, gate, and

controller automata of Figures 1{3. The controller communicates with the trains by synchronizing

on enter and exit transitions. It issues commands to the gate on the synchronized events raise and

lower .

Formally, the product A1�A2 of A1 and A2 is the linear hybrid automaton A = (X1[X2; V1�
V2; '

0
1 ^ '02; inv; E; upd; jump; asap; rate; L1 [L2; syn).

� Each location (v1; v2) in V1 � V2 has the invariant inv(v1; v2) = inv1(v1) ^ inv2(v2), and the

rate condition rate(v1; v2) = rate1(v1) ^ rate2(v2).

� E contains the transition e = ((v1; v2); (v
0
1; v

0
2)) if

(1) e1 = (v1; v
0
1) 2 E1, v

0
2 = v2, and syn1(e1) 62 L2; or

(2) e2 = (v2; v
0
2) 2 E2, v

0
1 = v1, and syn2(e2) 62 L1; or

(3) e1 = (v1; v
0
1) 2 E1, e2 = (v2; v

0
2) 2 E2, and syn1(e1) = syn2(e2).

In case (1), syn(e) = syn1(e1), upd(e) = upd1(e1), jump(e) = jump1(e1), and the partial

function asap de�nes e to be urgent i� e1 is urgent; in case (2), syn(e) = syn2(e2), upd(e) =

upd2(e2), jump(e) = jump2(e2), and the partial function asap de�nes e to be urgent i� e2
is urgent; and in case (3), syn(e) = syn1(e1) = syn2(e2), upd(e) = upd1(e1) [upd2(e2),

jump(e) = jump1(e1) ^ jump2(e2), and the partial function asap de�nes e to be urgent i�

either e1 or e2 is urgent.

The product automaton A is well-de�ned if all urgent transitions of A are invariant-enabled, and

all rate conditions of A are bounded.

6

www.manaraa.com

2.3 Reachability and veri�cation

Let A be a linear hybrid automaton with n variables. The state space � � V � Rn of A is

the set of admissible states. We de�ne the binary successor relation !A on the state space �

as
S
e2E !e [

S
�2R�0

!�. For a region W , we de�ne the successor region post(W) to be the

set of states that are reachable from some state in W via a single transition or time step, i.e.

post(W) = fs j 9s0 2 W such that s0 !A sg. The region post�(W) forward reachable from W is

the set of states reachable fromW by a �nite number of steps, i.e. post�(W) =
S
i�0 post

i(W). The

predecessor region pre(W) is the set of states from which it is possible to reach a state in W via a

single transition or time step. The region pre�(W) backward reachable from W is the in�nite union
S
i�0 pre

i(W). If W is linear, then post(W) and pre(W) are also linear regions, and they can be

computed e�ectively [ACHH93].

In practice, many veri�cation problems can be posed in a natural way as reachability problems.

Often, the system is composed with a special monitor process that \watches" the system and enters

a violation state whenever the execution of the system violates a given safety or timing requirement.

This technique is used in the veri�cation and synthesis of the active control structure case study of

Section 4. A state (v; s) is initial if (v; s) is admissible and (v; s) 2 [['0]]. A system with initial states

I is correct with respect to violation states U if post�(I) \ U = ;, or equivalently, if pre�(U) \ I

is empty.

HyTech computes the forward reachable region post�(I) by �nding the limit of the in�nite

sequence I , post(I), post2(I), : : : of regions. Analogously, the backward reachable region pre�(U) is

found by iterating pre . These iteration schemes are semi-decision procedures; there is no guarantee

of termination. However, it has been shown that for a large class of hybrid systems, the initialized

rectangular automata of [HKPV95], termination is guaranteed after a simple preprocessing step.

2.4 Parametric analysis

A system description often contains parameters. The system is incorrect for parameter values for

which there exists a state in the region post�(I)\U [CH78, AHV93]. Thus we may obtain necessary

and su�cient conditions for system correctness by performing reachability analysis followed by

existential quanti�cation over all variables that are not parameters.

Our study of the GRC demonstrates this technique. The controller decides when to issue lower

commands to the gate based on the amount of time since each train last passed the sensor ahead

of the intersection. We introduce the parameter � in the controller automaton (Figure 3) so that �

corresponds to the amount of time the controller waits before a lower command is sent to the gate.

HyTech determines that the GRC system includes violations (the gate is not closed and there is

a train in the intersection) if and only if � is greater than or equal to 20, from which we deduce

correctness for � strictly less than 20.

3 HYTECH

There have been three generations of HyTech. The earliest prototype we developed [AHH93]

was written entirely in Mathematica. Regions are represented as symbolic expressions denoting

state predicates. The de�nition of a successor region uses existential quanti�cation over the reals,

which is easily encoded in Mathematica. Mathematica o�ers powerful symbolic manipulation,

and allows rapid development and experimentation with algorithms and heuristics. However, its

operations over state predicates are computationally ine�cient; in particular, the computation of

time-step successor states requires expensive quanti�er elimination operations. HyTech [HH95a]

7

www.manaraa.com

was rewritten to avoid this bottleneck. The second prototype uses a Mathematica main program

and computes time-step successors by calling e�cient C++ routines from a library for manipulating

polyhedra [Hal93]. However, this prototype requires ine�cient conversions between Mathematica

expressions and C++ data structures. It also still relies on Mathematica for computing transition-

step successor states. The total speed-up achieved is roughly one order of magnitude. The new

generation HyTech that we introduce here avoids Mathematica altogether and is built entirely in

C++. It is roughly two to three orders of magnitude faster again than the second generation veri�er.

The input language of our reimplementation is both cleaner and more expressive. The lan-

guage consists of two parts, a system-description language, and an analysis-command language.

The system-description language extends that of the prototype in a uniform way by allowing linear

predicates as jump and rate conditions. This allows us to model nondeterministic and simultaneous

assignments of variables (previously only deterministic assignments were allowed), linearly depen-

dent rates of variables (previously only conjunctions of �nite upper and lower bounds on individual

rates were allowed), and urgent transitions (see below). The analysis-command language consists

of a exible programming language for writing system analysis scripts. It includes macros for com-

mon veri�cation tasks such as reachability analysis and error-trace generation. In the following,

we describe only a couple of aspects of each language. More detail, and formal de�nitions of both

languages, can be found in [HHWT95].

3.1 System-description language

The user describes a system as the composition of a collection of components. Each component is

given as a direct textual representation of a linear hybrid automaton.

Type checking Variable type declarations allow more readable descriptions and enable simple

static checking by the parser. Variables may be of the following types: discrete, clock, stopwatch,

parameter, or analog. Variables of type discrete, clock, and parameter are said to be �xed-rate

variables. Their rates are �xed by their type, and need not be given by the user.

Urgent transitions The introduction of urgent transitions serves two purposes. First, it often

allows far simpler descriptions of a system. Urgent transitions could have been modeled using a

special additional clock xurg . Every urgent location v would then have an invariant xurg = 0, and

the clock xurg would be reset to 0 on entering v. By contrast, our input language clearly labels

urgent transitions as such, syntactically distinguishing them from the other transitions. This makes

the modeling of parallel components easier. Suppose that a process is waiting in a location with

an urgent transition waiting to synchronize with another process on a given label. In general, we

cannot specify this behavior in a clean modular way using the clock xurg from above. This is because

we may need to identify all locations in the product automaton where the urgent transitions may

synchronize. The correct timing information for the clock xurg may not be achievable by adding

invariants and jump conditions to the modular components. Our approach avoids this problem,

and enables us to simply model each component by individually labeling urgent transitions. The

only restriction is that urgent transitions must be invariant-enabled.

Second, our method admits more e�cient implementation. Urgent transitions are implemented

e�ciently by using a boolean ag to distinguish each urgent location: there is no need to compute

time-step successors for urgent locations. More importantly, it also avoids the need for the extra

clock xurg , thereby lowering the dimension of the continuous state space. This saving can be

signi�cant, because computation on polyhedra is exponential in the dimension, i.e. the number of

variables.

8

www.manaraa.com

3.2 Analysis-command language

HyTech provides an iterative programming language that enables the user to write her own ver-

i�cation programs using while loops, conditional statements, and primitive operations on regions.

The region primitives supported by HyTech include boolean operations, pre, post , existential

quanti�cation on variables and locations (see below), and abstract interpretation operators such

as convex hull. These operations allow the model checking of branching temporal-logic require-

ments [HNSY94, AHH93], and the abstract interpretation of hybrid automata [HRP94, HH95c].

The analysis-command language de�nes convenient macros for reachability analysis, and for the

veri�cation and parametric analysis of safety and timing requirements. There is also a routine for

outputting trajectories (sequences of transition and time steps) between regions, which is useful for

diagnostic error-trace generation (see below).

Parametric analysis A major strength of HyTech is its ability to perform exact parametric

analysis [HWT95]. Usually we are only interested in the values of the parameters that cause a

system to fail; the speci�c values of other variables when failure occurs is often irrelevant. However,

this information is not easily inferred from a complete listing of the reachable states that are

violating, because post�(I)\ U includes relationships between the parameters and other variables.

HyTech provides commands to existentially quantify \irrelevant" information. First, the user may

specify any subset of the variables in X to be existentially quanti�ed. Second, the user may request

location information be ignored. For example, given a region W , HyTech can compute a linear

predicate that de�nes the valuations s for which there exists a location v such that (v; s) 2 W .

Error-trace generation To enhance HyTech's usefulness as a debugging tool, we added a facility

to produce diagnostic information for systems failing to meet their safety and timing requirements.

If a violation state in U is reachable from an initial state in I , then a trajectory from I to U provides

an error trace. HyTech produces error traces that are minimal in the number of transition steps

required to reach a violation state.

3.3 Implementation

All linear regions are stored using polyhedra to represent convex zones. Symbolic analysis of

a linear hybrid automaton requires boolean operations on linear regions and the computation of

successor and predecessor regions. The new HyTech uses an e�cient C++ library for manipulating

polyhedra [Hal93, HRP94]. The library supports boolean operations. We now show how to compute

successor and predecessor regions. The polyhedral library o�ers two internal representations of

polyhedra. One is a set of linear constraints de�ning a polyhedron in the natural way. The other

is a frame that consists of (1) a nonempty �nite set P = fsig1�i�p of points in R
n, (2) a �nite set

R = f�jg1�j�r of rays in R
n with the origin as source, and (3) a �nite set of lines L = fkg1�k�l in

R
n passing through the origin. The points, rays, and lines are viewed as generators de�ning the set

of all states that can be written as a linear combination
P

1�i�p �isi+
P

1�j�r �j�j +
P

1�k�l �kk,

for real-valued constants �i, �j , and �k, where for all i, �i � 0,
P

1�i�p �i = 1, and for all j, �j � 0.

Di�erent operations on convex zones require di�erent representations of polyhedra, so we switch

between the two as needed. The library supplies routines for adding rays, points and lines to a

frame representation of a polyhedron, adding constraints to a constraint representation, converting

between the representations, and computing intersection.

The computation of successor regions requires the computation of time-step successors and

transition-step successors.

Time-step successors Time-step successors are computed using the frame representation by

9

www.manaraa.com

x1

x2

(3; 2)

(1; 4)

(3; 2)

_x2

_x1

(1; 4)

Z

Figure 4: Computation of time-step successors

adding rays that delineate the \shadow" created by the continuous evolution of the variables.

Suppose that a location has rate condition , and suppose that there is a set R0 = f�0jg1�j�m of

rays such that f
P

1�j�m �j�
0
j j �j � 0g = fk � u j [_X := u] is true and k � 0g. It can be shown

that for every bounded rate condition such a set of rays exists. Computing the time-step successors

involves adding these rays to the frame representation of a convex zone. For example, in a system

with two variables x1 and x2, given the rate condition _x1 � 1 ^ _x2 � 2 ^ _x2 � _x1�1 ^ _x2 � 2 _x1+2,

we add rays in the directions (1; 4) and (3; 2) when computing the time-step successors of the convex

zone Z, as shown in Figure 4. The polyhedron obtained after adding rays is then intersected with

the polyhedron for the location's invariant.

In order to compute the time-step predecessors for the pre operation, we use the inverse rays

instead, e.g. (�1;�4) and (�3;�2) for the above example.

Transition-step successors Consider the transition e = (v; v0). To compute the successor states

under !e of a region W = (v; Z) for a convex zone Z, we start with the constraint representation

of Z. We temporarily augment the dimension of the state space with an added variable x0i for

each xi 2 upd(e). We add the constraints for the jump condition jump(e). For every xi 2 upd(e),

xi is existentially quanti�ed, and x0i is \renamed" xi. Last, we intersect with the invariant of v0.

Existential quanti�cation of the variable x is achieved by converting to the frame representation

and adding the line whose direction has entry 1 for the component corresponding to x, and 0 for

all other entries. Renaming consists of reconverting to a constraint matrix, copying the coe�cients

for the primed variables to their unprimed counterparts, and then decreasing the dimension of the

constraint matrix back to n by disposing of entries for the primed variables.

To compute the set of predecessor states for each transition, we perform an analogous sequence

of operations.

3.4 Performance

We have tested our veri�er on a number of examples. Two of these| the generic railroad crossing

and the active structure controller|are new examples of automatic parametric analysis, and are

described in more detail in Section 4 below. In addition, we �rst analyzed the Philips audio control

protocol [BPV94] in [HWT95], and provide comparative performance data for the new generation

HyTech. The protocol communicates bit sequences using the timing-based Manchester encoding.

The sender and receiver processes operate with unsynchronized clocks whose rates are subject to

bounded drift. We verify that the protocol is correct for Philips' given clock drift of 1=20. We

also synthesize the maximal possible clock drift required for correctness. Our model uses 320

10

www.manaraa.com

factor

HyTech prototype faster

Audio control

verifying correctness 19 sec 5.0 hrs 950

verifying timing 25 sec 5.0 hrs 723

parametric analysis 253 sec 27.9 hrs 396

Mutual exclusion

2 processes { param. 2.6 sec 128 sec 49

3 processes { param. 26 sec 26.4 min 61

4 processes { param. 6.1 min 10.0 hrs 98

5 processes { param. 49.8 min ��

Train-gate control

veri�cation 0.96 65 67

parametric analysis 1.4 110 78

GRC

veri�cation 9 2.4 hrs � 961

parametric analysis 34 1.3 hrs � 134

Active structure

veri�cation 153 N/A N/A

parametric analysis 384 N/A N/A

� model uses deterministic assignment on exiting I

�� execution abandoned after 48 hrs

Figure 5: Comparative performance

locations and up to 7 variables. Second, we synthesized timing parameters for the correctness of

Fischer's mutual exclusion protocol [AL92] with perfect clocks. We provide data for analyzing

various numbers of concurrent processes contending for a resource. Third, we synthesize a critical

upper bound on the controller's response time for the simple train-gate crossing of [AHH93].

Figure 5 compares HyTech's performace with that of the second generation veri�er [HH95a].

All analysis was done on a Sun 670MP, and unless otherwise stated all times are in seconds. Data

for the prototype over the active structure control examples are not available, since the proto-

type's input language does not allow a modular speci�cation of the system's urgent transitions.

The improvement in computational e�ciency over the prototype is substantial. The reduced com-

putational times are most dramatic in the audio control example, which involves a large product

construction. This is explained by the fact that the prototype's code for forming products is written

entirely in Mathematica, whereas its reachability-analysis code is a mixture of Mathematica and

C++ routines.

4 Case Studies

We demonstrate HyTech's symbolic analysis techniques and diagnostic capabilities, by presenting

new parametric results for the benchmark generic railroad crossing problem of [HJL93] and the

active control structures of [ECB94].

11

www.manaraa.com

4.1 Generic railroad crossing

We provide the �rst automatic synthesis of critical timing constraints for this system involving

trains entering an intersection from multiple tracks. The GRC problem is stated in [HJL93] as

follows.

The system to be developed operates a gate at a railroad crossing. The railroad crossing I lies

in a region of interest R, i.e., I � R. A set of trains travel through R on multiple tracks in both

directions. A sensor system determines when each train enters and exits region R. To describe the

system formally, we de�ne a gate function g(t) 2 [0; 90], where g(t) = 0 means the gate is closed

and g(t) = 90 means the gate is open. We also de�ne a set f�ig of occupancy intervals, where each

occupancy interval is a time interval during which one or more trains are in I . The ith occupancy

interval is represented as �i = [�i; �i], where �i is the time of the ith entry of a train into the crossing

when no other train is in the crossing and �i is the �rst time since �i that no train is in the crossing

(i.e., the train that entered at �i has exited as have any trains that entered the crossing after �i).

Given two constants �1 and �2, �1 > 0; �2 > 0; the problem is to develop a system to operate the

crossing gate that satis�es the following two properties:

Safety: t 2 [i�i) g(t) = 0 The gate is down during all occupancy intervals.

Utility: t 62 [i[�i � �1; �i + �2]) g(t) = 90 The gate is up as often as possible.

4.1.1 System description

The model of the system is the parallel composition of the component automata appearing in

Figures 1{3. To limit state-space explosion, we restrict our attention to the case of two trains.

Trains. Each train automaton Ti uses a clock xi that indicates how long it will be until it reaches

a sensor placed ahead of the intersection. A train sends a signal to the controller on entering the

region R, and at some time between �1 and �2 time units later, it enters the intersection. There is

no restriction on when it must leave the intersection. The variable delay between entering R and

arriving at the intersection is modeling by the guard on the transition to I . The invariant xi � �2
on location R ensures that the train enters the intersection no later than its maximum delay time.

The nondeterministic assignment on exiting I indicates it is unknown when the train will reenter R.

Gate. The locations of the gate automaton correspond to whether the gate is stationary in the

open or closed position, or in the process of being raised or lowered. The rate at which the gate

moves is variable, ranging between 9 and 10 degrees per time unit.

Controller. The controller receives sensing signals that indicate when each train enters R or leaves

I . Recall that its operation is governed by the parameter �, which corresponds to the latest possible

moment it may delay before sending the gate a lower command. In order to guarantee that the

gate be closed when any trains are in the intersection, the value chosen for � must ensure that a

train approaching as fast as possible will not enter the intersection before the slowest lowering of

the gate is complete. This is achieved by monitoring the times since the trains entered the region

R, and keeping the gate open provided all trains are su�ciently far from entering the intersection.

In two of its locations (open and closed), the controller waits while time passes. In location

open, the controller believes the gate is either open or in the process of opening. The closed location

is similar. Control may remain in the open location provided both trains are su�ciently far from

entering their intersections. This is speci�ed by the invariant x1 � � ^ x2 � �. If either train

reaches a critical distance from the intersection, the lower command is immediately issued.

12

www.manaraa.com

exit
i

xi := (�1; 0]; yi := 0

x
i
= 0

enterRi

R

inIi

far

xi � �2

I

xi � 0

�1 � xi � �2

Figure 6: Revised train automata for verifying the utility property

From its closed location, the controller is essentially waiting for a train to leave the intersection,

so it may issue a command to raise the gate. However, even if a train should leave the intersection, it

may not be appropriate to raise the gate, since the other train may already be near, or even within,

the intersection. If the other train is far enough away, the controller enters location must raise.

Then the urgent transition to location open is taken, corresponding to sending an immediate raise

command to the gate.

4.1.2 System requirements

Both the safety and utility properties of [HJL93] can be expressed as reachability properties. The

controlled system satis�es the safety property provided it never reaches a state in which a train

is in location I , and the gate is not in location closed . By symmetry we need only consider

the case concerning train 1. The violating states are expressed by the state predicate loc[T1] =

I ^ loc[gate] 6= closed, where state predicates specifying the location of the component automaton

Ai are written using the location counter loc[Ai]. The utility property states that the gate is open

unless there is a train that was recently in the intersection, or is about to be in the intersection.

To express the amount of time elapsed since Ti last exited the intersection, we need to introduce

an extra clock yi. The augmented automaton for the ith train appears in Figure 6. The utility

property is violated precisely when it is possible to reach a state in which the gate is in location

open and neither train is close to being in the intersection. The violating states are expressed by

the state predicate:

loc[gate] 6= open ^ loc[T1] 6= I ^ loc[T2] 6= I ^

x1 � �2 � �1 ^ y1 � �2 ^ x2 � �2 � �1 ^ y2 � �2

4.1.3 Veri�cation

We veri�ed that the system satis�es both the safety and utility properties when the parameters are

�xed to appropriate values. We set �1 to 30 and �2 to 40. A train could enter I as soon as 30 time

units after entering R, and the gate takes up to 10 time units to lower. Therefore the controller

must send the gate a signal 10 time units before the train's clock reaches 30, i.e. within 20 time

units of the train's entering the region R. In order to avoid a race condition, we set the parameter

� in the controller to 19. With these parameters set, we also verify the utility property for �1 = 22

and �2 = 11. To see that �1 must be greater than 21, observe that a slow train may enter the

intersection 21 time units after the controller orders the gate to lower. Similarly, �2 must be greater

than 10, since a slow gate may take 10 time units to be opened after a train exits. HyTech takes

9 seconds to verify both these properties.

13

www.manaraa.com

x � 10
"send

x = 0

#sample

x � 5

Synchxs

write SS 1

x = 10 !

x := 0

x = 5 !

x := 0

SENSOR

z = 5 !
z := 0

write SC 0

z � 10
"receive z = 10

Synchxp

read SC 1

z := 0 z � 5

Synch0xp

z = 0

#receive
pulse

z := 0

z = 10 !z � 30

"apply

z := 0
z � 30 !

#apply

z = 0

ACTUATOR

x � 55
"sample

#send

read SS 0

x := 0

50 � x ^ x � 55 ! x := 0

25 � z ^

z = 0

x = 0

ASAP

ASAP

Figure 7: Sensor and actuator automata

4.1.4 Parametric analysis

We use HyTech to determine precisely which values of � will yield controllers satisfying the safety

property. The cuto� point � for lowering the gate is treated as a parameter. Our tool takes 34

seconds to determine that the controller is correct whenever the parameter � has value strictly less

than 20.

4.2 Active structure control

A formal description of an intelligent structural control system appears in [ECB94]. The control

system uses a pulse control algorithm that performs three basic tasks: sampling the state of the

structure, updating its model of the structure, and applying a pulse to the structure. The system

consists of three main components| the sensor, the actuator, and the controller. The role of the

sensor is to sample important system data such as velocities and displacements and to communicate

this information to the controller. Sampling may take from 50 to 55 time units (given as tenths

of a millisecond). After sampling the data, the sensor sends it to the controller, and waits for

the controller to reactivate its sampling. The actuator operates in a similar fashion to the sensor,

except that instead of sensing data it applies pulses to the structure being controlled. Pulses last

from 25 to 30 time units. The controller's role is to coordinate the sensor's sampling and the

actuator's pulse applications, as well as updating its own model of the structure, and calculating

the magnitude of pulses. It repeatedly activates the sensor. When it receives data back from the

sensor, it decides whether to update its model of the structure and reactivate the sensor, or to �rst

calculate the appropriate pulse and then signal the actuator to proceed with a pulse application.

It is veri�ed in [ECB94] that the control system satis�es lower and upper bounds on the time

between consecutive pulse applications. The system is modeled in Modechart [JS88], a graphical

language for hierarchical state machines subject to timed enabling conditions. A translation tech-

nique from Modechart into Temporal CCS is provided. The Temporal CCS description is then

veri�ed using the Concurrency Workbench [CPS93].

14

www.manaraa.com

"send

y � 10

Synchxs Synch0xp
y := 0

"receive

y = 0

y = 0

#calc
y � 5

Synchxpy = 5#send

y � 10 y � 5

read SC 0

y := 0 write SC 1

y := 0

t � 135
!

"calc
y � 45

"receive0

y = 0

#update

y := 0

y := 0

y = 10 !

y := 0

y = 5 !

t � 135

y � 25
"update

y = 1y � 25 !

t := 020 � y ^

read SS 1 write SS 0

t = 135 !

t := 0

y = 10 !

y = 0 ^ t � 135

ASAP !

y � 1 ^

t � 135

y := 0
40 � y ^ y � 45 !

#receive ASAP

Figure 8: Controller automaton

_w = 0
viol

zero onezero one

write SS 1 write SC 0

write SC 1

SYNCH SENSOR

write SS 1

read SC 0read SS 1

write SC 0write SS 0

SYNCH CONTROL

w � periodlow

pulse

_w = 0 _w = 1

testing

w := 0

MONITOR

read SC 1

write SC 1

pulse

w := 0
w � period

hi

pulse

idle

read SS 0

write SS 0

Figure 9: Synchronization variables and monitor

4.2.1 System description

The translation from the Modechart speci�cation to linear hybrid automata is relatively straight-

forward. The system's sensor, actuator, and controller, as well as the two auxiliary binary variables

synch sensor and synch control are modeled as the linear hybrid automata in Figures 7{9. The

variables x, y, z, and t are all clocks. In the sensor automaton, the upper bound of 55 on the

sampling time is enforced by the invariant on location "sample. Communication is coordinated

through the control variable synch sensor . After completing its sampling, the sensor takes 10 time

units to prepare the data for transmission (in location "send), then sends the data in 5 time units

after �rst setting synch sensor to 1. It then waits for the controller to reset the variable to 0 as a

signal to reactivate sampling. The actuator automaton is similar to the sensor. Coordination with

the controller is achieved through the variable synch control .

The controller follows two basic loops; one for sampling data (the upper loop in Figure 8) and

one for prompting the actuator. Each time a cycle is completed and control returns to location

"receive, the controller decides whether to execute a sampling cycle or an actuating cycle. If, after

checking continuously for 1 time unit, insu�cient time (no more than 135 time units) has passed

15

www.manaraa.com

since taking the last actuating cycle, it follows the sampling branch. Otherwise, it reactivates the

actuator. To do so, it �rst calculates how strong and how long the pulse should be before setting

the variable synch control to 1 to alert the actuator. The clock t is used to measure the time

elapsed since control last entered location "calc at the beginning of the actuating cycle.

Each synchronization variable is modeled using a separate location for each value it may take.

Reading the value of the variable is dependent on the current location, and writing causes the

variable to move to the location for the new value. Note that we need separate automata to model

the variables synch control and synch sensor , rather than declaring them as explicit variables,

because there are urgent transitions dependent on their values.

4.2.2 System requirements

According to [ECB94], the system should meet certain periodic constraints on the times between

the starts of successive pulses. The delays between pulses are required to lie between 37 and 145

time units.

4.2.3 Parametric analysis

Rather than simply verifying these bounds are met, we instead synthesize the exact bounds on the

system's period. Following [ECB94], we add a monitor automaton to the system (see Figure 9). It

\watches" the executions of the control system and enters a special violation location whenever the

system violates its safety speci�cation. In our case, we also introduce two parameters, periodlow and

periodhi. A violation consists of a pulse event followed by another pulse event before periodlow time

units, or a pulse event followed by more than periodhi time units without a pulse event. HyTech

shows that the period can only take values in the interval [135; 145], where the bounds are tight.

4.2.4 Error-trace generation

In our analysis of the system, HyTech revealed a typographical error in the presentation of the

Modechart speci�cation in [ECB94]. The typographical error admits a subtle, but critical, race

condition in the controller that enables delays of up to 210 time units between pulses, thereby

violating the system's periodic requirements. We use this example to demonstrate HyTech's

diagnostic capabilities.

By literally translating the Modechart in [ECB94] for the controller into a hybrid automaton,

the transition (see Figure 8) out of location "receive with guard t � 135 would have destination

location "update, and location "receive0 and all associated transitions would not appear. For the

resulting system, HyTech synthesizes a lower (upper) bound of 135 (210) time units on the delay

between successive pulse applications. The tool also generates a non-trivial minimal-length error

trace with 49 transition steps in 123 seconds of CPU time. In the execution trace, the controller

follows its actuating cycle the �rst time it reaches location "receive. After the controller sets the

variable synch control to 1, the actuator applies a pulse 15 time units later. The controller then

progresses to location "receive with the clock t having value 70. The ensuing sampling cycle takes

place in exactly 65 time units; the sensor can immediately begin sampling in location "sample (a

delay of 50 time units), then set synch sensor to the value 1 (a 10 time unit delay), followed by a

delay of 5 time units in the controller before resetting synch sensor to 0. Thus the controller enters

location "receive with t having value 135. The controller may then follow another sampling cycle,

which delays the application of the next pulse longer than the tolerable upper bound of 145 time

units.

16

www.manaraa.com

References

[ACD+92] R. Alur, C. Courcoubetis, D. Dill, N. Halbwachs, and H. Wong-Toi. An implementation

of three algorithms for timing veri�cation based on automata emptiness. In Proc. of 13th IEEE

Real-time Systems Symposium, pp. 157{166, 1992.

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin, A. Oliv-

ero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical Computer

Science, 138:3{34, 1995.

[ACHH93] R. Alur, C. Courcoubetis, T.A. Henzinger, and P.-H. Ho. Hybrid automata: an al-

gorithmic approach to the speci�cation and veri�cation of hybrid systems. In Hybrid Systems,

LNCS 736, pp. 209{229. Springer, 1993.

[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science, 126:183-

235, 1994.

[AHH93] R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic symbolic veri�cation of embedded

systems. In Proc. of 14th IEEE Real-time Systems Symposium, pp. 2{11, 1993.

[AHV93] R. Alur, T.A. Henzinger, and M.Y. Vardi Parametric real-time reasoning. Proc. of 25th

ACM Symposium on Theory of Computing, pp. 592{601, 1995.

[AL92] M. Abadi and L. Lamport. An old-fashioned recipe for real time. In Real Time: Theory in

Practice, LNCS 600, pp. 1{27. Springer, 1992.

[BPV94] D. Bosscher, I. Polak, and F. Vaandrager. Veri�cation of an audio-control protocol. In

FTRTFT 94: Formal Techniques in Real-time and Fault-tolerant Systems, LNCS 863, pp. 170{

192. Springer, 1994.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a

program. In Proc. of 5th ACM Symposium on Principles of Programming Languages, pp. 84{97,

1978.

[Che68] N.V. Chernikova. Algorithm for discovering the set of all solutions of a linear programming

problem. U.S.S.R. Computational Mathematics and Mathematical Physics, 8(6):282{293, 1968.

[CPS93] R.J. Cleaveland, J. Parrow, and B. Ste�en. The Concurrency Workbench: a semantics-

based tool for the veri�cation of �nite-state systems. ACM Trans. on Programming Languages

and Systems, 15(1):36{72, 1993.

[DWT95] D.L. Dill and H. Wong-Toi. Veri�cation of real-time systems by successive over and under

approximation. In CAV 95: Computer-aided Veri�cation, LNCS 939, pp. 409{422. Springer, 1995.

[DY95] C. Daws and S. Yovine. Two examples of veri�cation of multirate timed automata with

Kronos. This volume.

[ECB94] W.M. Elseaidy, R. Cleaveland, and J.W. Baugh Jr. Verifying an intelligent structural

control system: a case study. In Proc. of 15th IEEE Real-Time Systems Symposium, pp. 271{

275, 1994.

[GL90] R. Gerber and I. Lee. A proof system for communicating shared resources. In Proc. of 11th

IEEE Real-time Systems Symposium, pp. 288{299, 1990.

17

www.manaraa.com

[Hal93] N. Halbwachs. Delay analysis in synchronous programs. In CAV 93: Computer-aided

Veri�cation, LNCS 697, pp. 333{346. Springer, 1993.

[HH95a] T.A. Henzinger and P.-H. Ho. HyTech: The Cornell Hybrid Technology Tool. In Proc.

of 1994 Workshop on Hybrid Systems and Autonomous Control. Springer, 1995.

[HH95b] T.A. Henzinger and P.-H. Ho. Algorithmic analysis of nonlinear hybrid systems. In CAV

95: Computer-aided Veri�cation, LNCS 939, pp. 225{238. Springer, 1995.

[HH95c] T.A. Henzinger and P.-H. Ho. A note on abstract-interpretation strategies for hybrid

automata. In Proc. of 1994 Workshop on Hybrid Systems and Autonomous Control. Springer,

1995.

[HHWT95] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. A user guide to HyTech. In TACAS

95: Tools and Algorithms for the Construction and Analysis of Systems. Springer, 1995.

[HJL93] C.L. Heitmeyer, R.D. Je�ords, and B.G. Labaw. A benchmark for comparing di�erent

approaches for specifying and verifying real-time systems. In Proc. of 10th IEEE Int. Workshop

on Real-time Operating Systems and Software, 1993.

[HKPV95] T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What's decidable about hybrid

automata? In Proc. of 27th ACM Symposium on Theory of Computing, pp. 373{382, 1995.

[HL94] C. Heitmeyer and N. Lynch. The generalized railroad crossing: a case study in formal

veri�cation of real-time systems. In Proc. of 15th IEEE Real-time Systems Symposium, pp. 120{

131, 1994.

[HNSY94] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for

real-time systems. Information and Computation, 111(2):193{244, 1994.

[HRP94] N. Halbwachs, P. Raymond, and Y.-E. Proy. Veri�cation of linear hybrid systems by

means of convex approximation. In SAS 94: Static Analysis Symposium, LNCS 864, pp. 223{

237. Springer, 1994.

[HWT95] P.-H. Ho and H. Wong-Toi. Automated analysis of an audio control protocol. In CAV

95: Computer-aided Veri�cation, LNCS 939, pp. 381{394. Springer, 1995.

[JS88] F. Jahanian and D.A. Stuart. A method for verifying properties of modechart speci�cations.

In Proc. of 9th IEEE Real-time Systems Symposium, pp. 12{21, 1988.

[LPY95] K.G. Larsen, P. Pettersson, and W. Yi. Compositional and symbolic model-checking of

real-time systems. This volume.

[LS85] N. Leveson and J. Stolzy. Analyzing safety and fault tolerance using timed petri nets. In

Proc. of Int. Joint Conference on Theory and Practice of Software Development, LNCS 186,

pp. 339{355. Springer, 1985.

[Sha93] N. Shankar. Veri�cation of real-time systems using PVS. In CAV 93: Computer-aided

Veri�cation, LNCS 697, pp. 280{291. Springer, 1993.

[WM93] F. Wang and A.K. Mok. A veri�er for distributed real-time systems with bounded integer

variables. In Proc. of 8th IEEE Conference on Computer Assurance, pp. 135{151, 1993.

18

